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Deep learning 
attracts lots of attention.
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Faster Learning  
Better Intelligence



Natural Intelligence in Living beings
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Artificial Intelligence
(or Machine Intelligence)
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AI is a discipline which involves with all sort of mechanisms/ Algorithms that deal with 
mimicking the activities of brain. 



✓ Machines to not require sleep or breaks, and are 
able to function without stopping with same 
efficiency.

✓ Machines can continuously perform the same 
task without getting bored or tired.

✓ Such machines are needed to carry out dangerous 
tasks where the human health  and safely are at 
risk.
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The major advantages of Artificial Intelligence:



Artificial Learning
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Understanding Simple 
Learning



Feed forward Neural Network

Feed forward algorithm:

• Activate the neurons from the 
bottom to the top.

Backpropagation: 

• Randomly initialize the parameters

• Calculate total error at the top, 𝑓6(𝑒)

• Then calculate contributions to error, 𝛿𝑛, at 
each step going backwards.
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Limitations of Neural Networks

Random initialization + densely connected networks 
lead to:

• Difficulty in training as the number of hidden layers 
increases
• In backpropagation, gradient is progressively getting more 

dilute. That is, below top layers, the correction signal 𝛿𝑛 is 
minimal.

• To get stuck in local optima
• The random initialization does not guarantee starting from 

the proximity of global optima.

Solution:
• Deep Learning/Learning multiple levels of representation
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Deep Learning
• The first deep-learning model was proposed by Alexey Grigorevich

Ivakhnenko and Lapa in 1965. who used polynomial activation functions and
analysed the network with statistical tools.

• In each layer, they selected the best features through statistical methods and
forwarded them to the next layer.

• They did not use backpropagation to train their network end-to-end but used
layer-by-layer least squares fitting where previous layers were independently
fitted from later layers.

20-08-2019 Workshop on Deep Learning and Applications 17

Figure 1: The architecture of the first known deep network
Source: (https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/)

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/


➢DEEP Learning (DL), as a subject deals with a set of algorithms developed to
achieve deeper intuitions and intricate structures in data.

➢DL framework comprises of multiple layers of nonlinear processing nodes
which are trained over a large set of data [1].

➢ Each layer in DL framework represents higher hierarchical level of
abstraction than preceding layers.

➢A DL algorithm finds complex, meaningful patterns and structures in large
scale of unlabelled data.

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521, no. 7553 (2015): 436-444.

[2] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. “Representation learning: A review and new perspectives.” IEEE
transactions on pattern analysis and machine intelligence 35, no. 8 (2013): 1798-1828.
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➢Deep Learning uses several layers of nodes between input and output.

➢ The series of layers between input & output identify and process features in a series of
stages, just as our brains.

➢We have always had good algorithms for learning the weights in networks with 1 hidden
layer

➢ But these algorithms are not good at learning the weights for networks with more hidden
layers [6]

[6] Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. "Learning Internal Representations by Error Propagation". David E. 

Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the 

microstructure of cognition, Volume 1: Foundations. MIT Press, 1986
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Deep Neural Networks 
(DNNs)

In 2006 Deep Breakthrough By
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Deep Learning  and  
Computational 

Intelligence
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Deep Neural Network
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Deep Neural Network?

• The name Deep neural networks (DNN) formally has come into use in 2006.

• DNN is an artificial neural networks (ANN) with multiple hidden layers.

• The main idea of DNN to extract high level features from the input data.

Source: (http://www.rsipvision.com/exploring-deep-learning/) 23
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Proposed Training Approach for Deep Network by Hinton 
LeCun and Bengio

• Train first layer using data without the labels (unsupervised).

• Then freeze the first layer parameters and start training the second layer
using the output of the first layer as the unsupervised input to the second
layer.

• Repeat this for as many layers as desired. This builds our set of robust
features.

• Use the outputs of the final layer as inputs to a supervised layer/model
and train the last supervised.

• Unfreeze all weights and fine tune the full network by training with a
supervised approach, given the pre-processed weight settings.

Softmax layer
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Supervised Fine-tuning
Apply  back propagation to adjust the whole weight of the network
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➢Deep Stacked Auto-Encoder (DSAE)

➢Convolution Neural Network (CNN)

➢Deep Recurrent Neural Network (DRNN)

and Long and Short Term Memory (LSTM)

➢Deep belief Network (DBN)

Most widely Used Deep Neural Networks Architectures are:
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Deep Stacked Auto-Encoder (DSAE)
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Autoencoder:

• It is a neural network for feature extraction from unlabeled data.

• Learns an encoding of the inputs so as to recover the original input from the
encodings as well as possible.

Source :(http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/)

28

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/


Denoising Autoencoders
Introduce stochastic corruption in the input;
e.g.:

1. Hide some features

2. Add Gaussian noise

Figure : Denoising Autoencoders

Corrupt Input Cleaned Input
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Fine tuning

• Fine tuning is a strategy that is used to increase the performance of stacked
sparse auto-encoder.

• Fine tunning treats all layers of SSAE as single network so that in single
iteration, we improve all the weights in SSAE.

• DNN was tuned with softmax based fine tuning and high level features are
generated at third hidden layer.

Softmax classifier

Softmax fine tuning
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Classification

• The high level features generated after fine tunning at last layer is
fed as input to the classifiers.

• Softmax classifier, kernal support vector machine and Random
Forest classifier etc. are used for the classification.

Softmax classifier, kernal

support vector machine

and Random Forest

classifier etc.
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Deep Fuzzy Network (DFN)
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Input 

Data

Actual output is 

very close to the 

desired output 

Input 

Data

Actual output is 

very close to the 

desired output 
Fuzzy Inference system

ANN

Fig : ANN can approximate a nonlinear system model with high accuracy

(Source: http://cs231n.github.io/neural-networks-1/)

Fig : FIS can also approximate a nonlinear system model with high accuracy
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Input 

Data

Actual output 

shows much 

deviations form 

the desired output

+

Uncertainties due to vagueness, 

ambiguity, imprecision (fuzzy) 

ANN

Fig : ANN can’t process various kinds of uncertainties and actual output deviates from desired output.

(Source: http://cs231n.github.io/neural-networks-1/)

34

http://cs231n.github.io/neural-networks-1/


Input 

Data

Actual output is 

close to desired 

output

+

Uncertainties due to vagueness, 

ambiguity, imprecision (fuzzy) 

Fuzzy Inference system

Fig : FIS can process various kinds of uncertainties and actual output is close to the desired output.
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Uncertainty  due to 
Vagueness with mf=2

Fuzzy Inference system

Training Error Testing Error

FIS ANN FIS ANN

No. of MFs =3 3.3521

16.2122

3.3195

18.9635No. of MFs =4 4.0311 4.4056

No. of MFs =5 5.7251 5.5243

Table : Comparison of working of ANN and FIS in presence of  fuzziness. 

FIS outperforms ANN. 
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Input 

Data

Actual output 

is very close to 

the desired 

output 

Fig : DNN can model highly complex nonlinear models of inputs very closely to desired outputs

(Source: http://searchnetworking.techtarget.com/definition/neural-network)

Input 

Data

Actual output 

is close to the 

desired output 
+

Uncertainty due to randomness 

(White Gaussian Noise) 

Fig : DNN can process uncertainty due to randomness (noise) in inputs very closely to desired outputs upto some extents

(Source: http://searchnetworking.techtarget.com/definition/neural-network)
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Input 

Data

Actual output 

shows deviations 

form the desired 

output

+

Uncertainties due to 

vagueness, ambiguity, 

imprecision (fuzziness) 

Fig : DNN can’t process uncertainty due to vagueness, ambiguity, imprecision (fuzziness) in inputs and actual output 

deviates from desired output.

(Source: http://searchnetworking.techtarget.com/definition/neural-network)

Motivation 1: DNN is unable to model uncertainty due to vagueness, ambiguity and 

impreciseness.
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Input 

Data

Actual output is 

close to desired 

output

+

Uncertainties due to vagueness, 

ambiguity, imprecision (fuzzy) Deep Fuzzy Network

DFN can process uncertainty due to vagueness, ambiguity, 

imprecision (fuzziness) in inputs and actual output is close to 

the desired output.

Motivation 1: Means DFN Treats uncertainty due to vagueness, ambiguity and 

impreciseness.
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Motivation 2: It is very difficult to understand the working of system model underlying in 

DNN by only looking at its weight and bias parameters.
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Now, I can understand 

linguistic rules, easy 

to understand at every 

level.

Fuzzy Inference system

x0

x5

x1

x4

.

.
Output

In
p

u
t

Motivation 2: Explicitly explains the working of  underlying system model in terms of 

linguistic rules intelligible to human beings.
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Now, I can add experts 

opinion in terms of 

rules.

Fuzzy Inference system

x0

x5

x1

x4

.

.
Output

In
p

u
t

Motivation 3: Adding experts opinion.
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Output

x1

x2

Input

Fig : Single TS based FIS 

1

1S

A single TS fuzzy inference system acts as universal approximator.

FIS has universal approximation capability. 
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Fig : Identified fuzzy membership functions in data after universal approximation.

2 2 1f x x= + + sin( )f x=
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x1

x2

1

1S

1

2S

2

1S
Output

Output LayerHidden Layer 1Input Layer

Fig : Feed-forward fuzzy network with one hidden layer
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Fig : Comparison of working of ANN and feed-forward fuzzy network with single hidden layer for 

function approximation. Feed-forward fuzzy network with single hidden layer outperforms ANN.

TS-Fuzzy Model
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No. of hidden 

nodes

Training Error (%) Testing Error (%)

FIS ANN FIS ANN

1 2.2665 11.2934 2.2402 12.6192

2 3.17183 22.0352 2.9856 22.9035

3 3.8864 11.5336 4.5625 12.9957

4 2.1328 11.9352 1.9030 11.008

5 2.7925 8.1358 2.4982 7.129

Table : Comparison of working of ANN and feed-forward fuzzy network with single hidden layer for function approximation. 

Feed-forward fuzzy network with single hidden layer outperforms ANN. 
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• Architecture of a generalized DFN is as shown below.
• DFN considered in the proposed work has fully connected layers i.e. each layer

is fully connected to next layer in DFN. Each layer in a DFN is composed of
multiple fuzzy nodes which are TS fuzzy inference systems.

Deep Fuzzy Network Architecture

Fig :  Architecture of MIMO DFN
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Input fuzzy membership 

function parameters

Parameters associated 

with a single fuzzy node

Fuzzy rule base 

(FRB)

Fuzzy rule premise 

parameters

Fuzzy rule consequent 

parameters
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(a)  Calculate output of first layer

Fig : Forward Pass in training a general L layered DFN
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(a)  Calculate output of first layer

Fig : Forward Pass in training a general L layered DFN

(b)  Calculate output of second layer
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(a)  Calculate output of first layer (b)  Calculate output of second layer (c)  Calculate output of  layer l

Fig : Forward Pass in training a general L layered DFN
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(d)  Calculate output of  final layer L

Fig : Forward Pass in training a general L layered DFN

(a)  Calculate output of first layer (b)  Calculate output of second layer (c)  Calculate output of  layer l
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(d)  Calculate output of  final layer L

Fig : Forward Pass in training a general L layered DFN

(a)  Calculate output of first layer (b)  Calculate output of second layer (c)  Calculate output of  layer l

2

1z
2

2z

2

3z

2

2

Kz

1

1z

1

2z

1

3z

1

1

Kz

1

lz

2

lz

3

lz

l

l

Kz

1

Lz

2

Lz

3

Lz

L

L

Kz

4

Lz

Calculate the error at

output layer and then

calculate the cost

function.
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Training DFN

• Backward Pass :-
➢ Compute the gradient of cost function with respect to output layer 

parameters
➢ Propagate the error in output layer backwards by using the chain rule
➢ Compute gradients of cost function with respect to all the remaining 

network parameters
• Simultaneously update all the parameters using stochastic gradient descent
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Backward Pass in training a general L layered DFN
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Fig : Update all the DFN parameters simultaneously
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Training DFN

Initialization of parameters

Forward Pass to compute output

Computing cost function value

Computing gradient of cost function with respect to output layer parameters

Back-propagating error in output layer to compute gradients of cost function with all network 
parameters

Simultaneous update of all network parameters using SGD

Fig : Flowchart of an iteration of training DFN
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Application of DFN as Auto-Encoder

• Since DFN is capable of modelling highly intricate nonlinear and complex patterns in data, it can be used as 
auto-encoder for feature learning.

Fig : DFN as auto-encoder

(a) two hidden nodes (b) three hidden nodes

Fig : Sparse Auto Encoder

(a) two hidden nodes (b) three hidden nodes

65



Results of classification
Table 1: Comparison between softmax classifier accuracies of DFN auto-encoder and DNN auto-encoder
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Table 2: Comparison between softmax classifier accuracies of DFN auto-encoder and DNN auto-encoder in 

presence of additive white Gaussian noise
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Shreedharkumar Rajurkar and Nishchal K. Verma, “Developing Deep 

Fuzzy Network with Takagi Sugeno Fuzzy Inference System”, IEEE 

International Conference on Fuzzy Systems, 2017 (FUZZ-IEEE 2017). 

For more details please refer to:
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Thank you 
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Case study-1
DNN for Machine Fault Diagnosis
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Machine Fault Diagnosis

Fault diagnosis system is a decision system which includes
detection and identification of faults.

Record machine parameters i.e. vibration, 
acoustic, temperature, current  etc.

Machine

Analyse Data by 
Fault Diagnosis 

System
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Key Challenges

• Manual feature extraction requires domain knowledge or
diagnostic expertise.

• ‘

• Learning complex non-linear relationships from machine data
which is non stationary in nature.

• Size of data collected from large no. of sensors in industrial
environment is too large.

• Deep learning holds the potential to overcome the
aforementioned deficiencies in current fault diagnosis methods.

Data 
Acquisition

Preprocessing
Feature 

Extraction
Feature 

Selection
Classification

Deep 
Learning

72

Summary_DataAcqusition.pptx
Summary_Preprocessing.pptx
Summary_FeatureExtraction.pptx
Summary_Feature Selection.pptx
Summary_Classification.pptx


Framework based on Deep 
Learning

Training 
Dataset

Extract Frequency 
Features

Extract Time 
Frequency Features

Initialize weights using SDSAE 
Autoencoders

Fine Tuning of Weights

Generation 
of High Level 

Features

Classifier using 
SVM

Classifier using 
Random Forest

• Benchmark dataset was taken and features were obtained via frequency and time
frequency analysis. Afterwards high level features were generated using DNN. The
output of the deep network served as the input for classifiers for final class
prediction.

Training features using Deep 
Neural Network
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Fault Diagnosis Framework 1

Stacked Autoencoder Autoencoder 1 Autoencoder 2
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Fault Diagnosis Framework 1

• Network Architecture (Air compressor, Drill bit, IMS Rexford, Bearing fault )

➢ Input Layer: 256/254 nodes

➢ 1st Hidden layer: 125 nodes

➢ 2nd Hidden Layer: 49 nodes
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Generation of High Level Features 
using DNN

It is the training phase where features are further processed to capture complex and
non linear relationship present among data.

➢ Initialization of weights: Herein network weights are initialized using weights
obtained from training a stacked autoencoder.

➢ Finetuning: In this part, the previously initialized weights are tailored for the given
classification problem to give better performance.
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Experimentation…Dataset

• Air compressor dataset: The dataset [54] comprises of 1800 acoustic recordings
evenly spread over 8 different states of a single stage reciprocating air compressor. A set of
225 recordings of five second duration was collected for each of the eight compressor states at
a sampling rate of 50kHz.

• Drill bit dataset: This dataset [55] includes vibration recordings of 4 different drill bit
states namely Healthy state, Flank wear state, Chisel wear state and Outer Corner wear state.
The dataset comprises of 120 recordings for each of the 4 states, collected at varying feed
rates and cutting speeds of the drill bit.
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Results with SVM 
(in % Accuracy)

`

FFT WPT

Deep Learning based on FFT 
features

Deep Learning based on WPT 
features

SAE SDAE SAE SDAE

FT1 FT2 FT1 FT2 FT1 FT2 FT1 FT2

Air Compressor 94.67 95.83 99.44 99.72 99.74 99.61 99.22 99.82 99.61 99.28

Drill Bit 93.3 96.46 99.79 99.58 99.58 100.00 99.1 98.21 99.38 90.21

Dataset

Features
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Conclusions

• DFM has the capability to handle more complexity and abstraction in data 
with smaller architecture compared with DNN.

• Working of trained model is understandable to human beings and underlying 
working can easily be comprehended by human beings by just looking at 
network parameters.

• DFN has the asset of dealing with uncertainty of various kinds such as 
vagueness, ambiguity, imprecision, etc.

• DFM is robust in presence of noise in data.

• Prior human supervisor knowledge can be easily incorporated into the 
architecture of DFN.

• Closely matches with human cognitive thinking
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